First Transformations of Pyrano[3,4-b]indol-3-ones to Salvadoricine and 2,3-Diacylindoles

Ulf Pindur* and H. Erfanian-Abdoust

Department of Chemistry and Pharmacy, University of Mainz, Saarstrasse 21, D-6500 Mainz 1, Federal Republic of Germany Received September 9, 1991

The readily available methylated pyrano[3,4-b]indol-3-ones 1a and 1b were hydrolyzed to furnish the 2-acetylindol-3-alkanoic acids 2 and 4. Compound 2 was easily transformed selectively to 2-acetyl-3-methylindole (3, salvadoricine). Substrate 1b reacts with molecular oxygen from the air only in the presence of a catalyst to give 2,3-diacetylindole (5) while 1a reacts with nitrosobenzene via a proposed Diels-Alder step to yield 2-acetylindole-3-carbaldehyde (6). The latter product can also be obtained in low yield from the reaction of 1a with molecular oxygen from the air.

J. Heterocyclic Chem., 29, 145 (1992).

The syntheses of acylindoles - interesting building blocks in alkaloid chemistry - have been widely documented and numerous efficient strategies have been developed in the past 30 years [1-4]. One of the more recent methods for the acylation of indoles is the highly efficient, high-yielding, and mild reaction of indoles I with dialkoxycarbenium tetrafluoroborates which yields the 3-acylindoles III as outlined in Scheme 1.

Scheme 1

OAIK

$$R^2 - \Theta$$
OAIK

 $R^2 - \Theta$
OAIK

 $R^2 -$

In contrast, the regioselective synthesis of 2-acylated indoles is more difficult [1-4]. Products of this type are usually obtained by way of processes involving special indolization strategies [8] or using N-protected 2-metallated indoles as intermediates [9]. In the present paper, we report on the continuation of our investigations of the reactivity of pyrano[3,4-b]indol-3-ones 1a and 1b [10,11] to include their transformations to acylindoles.

The readily available 1-methylpyrano[3,4-b]indol-3-one (1a) [11] underwent alkaline hydrolysis to furnish the 2-acylindol-3-acetic acid (2) in 76% yield which, in turn, underwent decarboxylation on refluxing in bromobenzene to give 2-acetyl-3-methylindole (3) (Scheme 2). Similarly, 1b was hydrolyzed to the 2-acetylindole-3-propanoic acid 4 in 60% yield (Scheme 2). However, the oxidative decarboxyl-

ation of 4 to 5 did not occur under an inert gas atmosphere although product 4 did react to a small extent with atmospheric oxygen to furnish 5 (<5%, by pmr and tlc). On the other hand, 1b in absolute solvents reacted with atmospheric oxygen to furnish 2,3-diacetylindole (5) exclusively. We propose the following mechanism for this direct transformation of 1b to 5: a [4 + 2] cycloaddition of 1b with oxygen gives the bridged intermediate IV which is subsequently stabilized by extrusion of carbon dioxide and cleavage of the peroxo bond. A related mechanism has been postulated previously [12].

In analogy to the reaction of atmospheric oxygen with 1b, we have attempted to convert the monomethyl derivative 1a to the expected 2-acetylindole-3-carbaldehyde (6) by reaction with atmospheric oxygen under absolute conditions. However, after refluxing of 1a in bromobenzene for 4 days, product 6 was obtained merely in 10% yield. For this reaction as well, we suggest an analogous mechanism involving a cycloadduct structurally related to IV (Scheme 2).

In the light of our extensive investigations on Diels-Alder reactions of **1a** and **1b** with carbodienophiles to produce carbazole derivatives [10], we have now looked at the reactions of **1a** and **1b** with some common heterodienophiles. The reaction of **1a** with the dienophilic nitrosobenzene (Scheme 3) provided an interesting result for which we suggest the following mechanism [10]: Diels-Alder reaction to give the intermediate **V** which is stabilized by ring cleavage at the labile N-O bond to furnish **VI**. This highly sensitive aldimine system should then undergo hydrolysis to the more stable product **6**. Although the regiochemistry of the Diels-Alder step in Scheme 3 could be reversed, the subsequent cleavage product of the alternative primary intermediate should lead to the same product **6**.

2-Acetyl-3-methylindole (3) is the alkaloid salvadoricine that was first isolated from the leaves of *Salvadora persica* [13a] which are used in folk medicine as an odontological

1a
$$\frac{1}{2} \frac{R}{H_2O/OH^-}$$
 $\frac{1}{2} \frac{R}{H_3O^+}$ $\frac{R}{H_2O/OH^-}$ $\frac{CO_2H}{H_3O^+}$ $\frac{Ph Br, 156°C}{-CO_2}$ $\frac{Me}{H_3O^+}$ $\frac{R}{H_3O^+}$ $\frac{R}{H_3O$

1b
$$\frac{1. H_2O/OH^2}{2. H_3O^4}$$
 $\frac{Me}{CO_2H}$ $\frac{O_2}{CH_3CN, 81^9C}$ $\frac{COMe}{COMe}$ $\frac{CO_2H}{COMe}$ $\frac{CO_2}{CO_2}$ $\frac{COMe}{COMe}$ $\frac{CO$

Scheme 3

remedy. The constitutions of the indole derivatives 2-6 were elucidated unambiguously with the help of ¹H, ¹H-nOe experiments above all.

In summary, the present results illustrate simple approaches to acylindoles from the readily available pyranoindolones 1a and 1b as well as a novel, high-yielding route

to the alkaloid salvadoricine [13b]. In these reactions, oxygen and nitrosobenzene act as "dienophilic" reagents to catalyse the formation of 2,3-diacylindoles. In contrast, the alternative syntheses of 2 and 4, such as the acetylation of the corresponding indol-3-alkanoic acids for example, are more difficult. In this context, it should be mentioned that indol-3-acetic acid has been transformed to 2, albeit in low yield, by the action of acetic anhydride/boron trifluoride etherate [14]. Hence, the present results demonstrate that compounds 1a and 1b represent synthetic equivalents of 2 and 4.

EXPERIMENTAL

Materials and Techniques.

Melting points were determined on a Büchi SMP 20 apparatus and are not corrected. The 'H- and '³C-nmr spectra were recorded on a Bruker WM-400 spectrometer at 400 and 100.6 MHz, respectively, using tetramethylsilane as an internal standard. The ei mass spectra (70 eV) were measured on a Varian MAT 7 spectrometer. Merck silica gel 60 (grain size: 0.040-0.063 mm) was

used for "flash" chromatography. Centrifugal layer chromatography was performed with a Harrison Research Chromatotron Type 7924T apparatus on Merck silica gel 60 F₂₅₄. Elemental analyses were performed using a Carlo Erba Strumentazione apparatus.

1-(3-Methyl-1*H*-indol-2-yl)ethanone (3).

2-Acetylindol-3-acetic acid (2) (217 mg, 1 mmole) in 20 ml of bromobenzene was heated under reflux at 156° for 3-4 days. The organic solvent was removed and the residue (about 2 ml) was purified by centrifugal layer chromatography (eluent: 40-60° petroleum ether/ethyl acetate, 3/1) to furnish product 3 in 80% yield (138 mg), mp 145-146° (petroleum ether/ethyl acetate), ref [14b], mp 143-144°; ¹H-nmr (hexadeuteriodimethyl sulfoxide): δ 2.56 (s, 6H, C3-CH₃ and COCH₃), 7.05 (dd, ${}^{3}J$ = 7.35 Hz, ${}^{3}J$ = 7.53 Hz, 1H, C3-H), 7.26 (dd, ${}^{3}J$ = 7.89 Hz, ${}^{3}J$ = 7.35 Hz, 1H, C6-H), 7.39 (d, ${}^{3}J$ = 8.25 Hz, 1H, C7-H), 7.68 (d, ${}^{3}J$ = 8.05 Hz, 1H, C4-H), 11.41 (s, 1H, NH); ${}^{13}C$ -nmr (hexadeuteriodimethyl sulfoxide): δ 10.41 (C2-CH₃), 28.84 (COCH₃), 112.33, 117.55, 119.31, 120.69, 125.34, 127.92, 132.03 (Cq), 136.05, 190.51 (CO); ei-ms: m/e (%) 173 (M*¹, 100), 158 (M*¹-CH₃, 99), 130 (M*¹-COCH₃, 95), 103 (65), 77 (73).

Anal. Calcd. for C₁₁H₁₁NO (173.21): C, 76.28; H, 6.40; N, 8.09. Found: C, 75.99; H, 6.60; N, 8.29.

2-Acetylindol-3-acetic Acid (2).

The pyranoindolone **1a** (199 mg, 1 mmole) was suspended in a mixture of 10 ml of 10% aqueous sodium hydroxide solution and 5 ml of 96% ethanol. The mixture was heated under reflux for 0.5 hour, cooled, and the free acid **2** precipitated by addition of 5% hydrochloric acid. The product was recrystallized from 96% ethanol in 76% yield (166 mg), mp 216°, ref [11], mp 214°; 'H-nmr (hexadeuteriodimethyl sulfoxide): δ 2.55 (s, 3H, CH₃), 4.05 (s, 2H, CH₂), 7.05 (ddd, ${}^{3}J = 7.2$ Hz, ${}^{3}J = 7.9$ Hz, ${}^{4}J = 2$ Hz, 1H, C5-H), 7.28 (ddd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 2$ Hz, 1H, C6-H), 7.43 (d, ${}^{3}J = 7.8$ Hz, 1H, C7-H), 7.66 (d, ${}^{3}J = 8.1$ Hz, 1H, C4-H), 11.63 (s, 1H, NH or OH), 12.25 (s, 1H, OH or NH); ei-ms: m/e (%) 217 (M*', 52), 200 (M*'-OH, 21), 172 (M*'-CO₂H, 100).

Anal. Calcd. for $C_{12}H_{11}NO_3$ (217.23): C, 66.35; H, 5.10; N, 6.45. Found: C, 66.36; H, 5.15; N, 6.21.

2-(2-Acetyl-1H-indol-3-yl)propanoic Acid (4).

The pyranoindolone **1b** (213 mg, 1 mmole) was suspended in a mixture of 10 ml of 10% aqueous sodium hydroxide solution and 5 ml of 96% ethanol. The mixture was heated under reflux for 0.5 hour, cooled, and the free acid 4 precipitated by addition of 5% hydrochloric acid. The product was recrystallized from 96% ethanol in 60% yield (139 mg), mp 182-184°; ¹H-nmr (hexadeuteriodimethyl sulfoxide): δ 1.42 (d, ${}^{3}J$ = 7.16 Hz, 3H, CHCH₃), 2.59 (s, 3H, COCH₃), 4.76 (q, ${}^{3}J$ = 7.16 Hz, 1H, CHCH₃), 7.04 (ddd, ${}^{3}J$ = 7.06 Hz, ${}^{3}J$ = 8.14 Hz, ${}^{4}J$ = 0.72 Hz, 1H, C5-H), 7.27 (ddd, ${}^{3}J$ = 8.33 Hz, 1H, C7-H), 7.64 (d, ${}^{3}J$ = 8.14 Hz, 1H, C4-H), 11.64 (s, 1H, NH or OH), 12.15 (s, 1H, OH or NH); ei-ms: m/e (%) 231 (M*, 31), 213 (M*, 14.0, 25), 186 (M*, CO₂H, 100), 145 (91). Anal. Calcd. for C₁₃H₁₃NO₃ (231.25): C, 67.52; H, 5.67; N, 6.06. Found: C, 67.20; H, 5.58; N, 5.78.

1-(2-Acetyl-1*H*-indol-3-yl)ethanone (5).

1,4-Dimethylpyrano[3,4-b]indol-3-one (1b) (213 mg, 1 mmole) was suspended in 20 ml of acetonitrile and heated at 81° for 4

days while passing air through the mixture. The organic solvent was removed and the residue (about 2 ml) was purified by centrifugal layer chromatography (petroleum ether/ethyl acetate, 3/1) to furnish the product 5 in 40% yield (40 mg), mp 123°, ref [12], mp 124°; ¹H-nmr (deuterioacetonitrile): δ 2.58 (s, 3H, COCH₃), 2.63 (s, 3H, COCH₃), 7.25 (dd, ³J = 7.22 Hz, ³J = 8.03 Hz, 1H, C5-H), 7.36 (dd, ³J = 7.40 Hz, ³J = 7.88 Hz, 1H, C6-H), 7.54 (d, ³J = 8.38 Hz, 1H, C7-H), 7.90 (d, ³J = 8.25 Hz, 1H, C4-H), 10.28 (s, 1H, NH); ei-ms: m/e (%) 201 (M*, 70), 186 (M*, CH₃, 100), 158 (M*, COCH₃, 13), 144 (35), 116 (30).

Anal. Calcd. for $C_{12}H_{11}NO_2$ (201.22): C, 71.63; H, 5.51; N, 6.96. Found: C, 71.55; H, 5.67; N, 6.88.

2-Acetylindole-3-carbaldehyde (6) [15].

1-Methylpyrano[3,4-b]indol-3-one (1a) (200 mg, 1 mmole) and nitrosobenzene (160 mg, 1.5 mmoles) in 20 ml of tetrahydrofuran were stirred at 20° for 6 days under an inert gas atmosphere (nitrogen). The mixture was then concentrated under vacuum and the residue worked up by "flash" chromatography (40-60° petroleum ether/ethyl acetate, 6/4) to give the product 6 in 30% yield (60 mg), mp 176-179° (petroleum ether/ethyl acetate); "H-nmr (deuterioacetonitrile): δ 2.72 (s, 3H, CH₃), 7.32 (ddd, δ J = 7.34 Hz, δ J = 7.64 Hz, δ J = 0.8 Hz, 1H, C5-H), 7.42 (ddd, δ J = 8.26 Hz, δ J = 7.10 Hz, δ J = 1.10 Hz, 1H, C6-H), 7.58 (d, δ J = 8.31 Hz, 1H, C7-H), 8.32 (d, δ J = 8.09 Hz, 1H, C4-H), 10.55 (s, 1H, NH), 10.65 (s, 1H, CHO); ei-ms: m/e (%) 187 (M*, 96), 159 (M*, CO, 43), 144 (M*, COCH₃, 100).

Anal. Calcd. for C₁₁H₉NO₂ (187.20): C, 70.58; H, 4.85; N, 7.48. Found: C, 70.40; H, 4.67; N, 7.35.

REFERENCES AND NOTES

- [1] R. J. Sundberg, The Chemistry of Indoles, Academic Press, New York, 1970.
- [2] W. A. Remers and T. F. Spande, in Indoles, Part Three, W. J. Houlihan, ed, John Wiley & Sons, New York, 1979.
- [3] J. A. Joule and G. F. Smith, Heterocyclic Chemistry, Van Nostrand Reinhold Company, London, 1979.
 - [4] U. Pindur, L. Pfeuffer and C. Flo, Chem. Ztg., 110, 307 (1986).
- [5] U. Pindur, C. Flo, E. Akgün and M. Tunali, Liebigs Ann. Chem., 1621 (1986).
- [6] U. Pindur, J. Müller, C. Flo and H. Witzel, Chem. Soc. Rev., 16, 75 (1987).
- [7] U. Pindur, Preparation and Chemistry of Ortho Acids, Ortho Esters, and Ortho Amides, in S. Patai, ed, The Chemistry of Functional Groups, The Chemistry of Acid Derivatives, Supplement B2, Vol 2, Wiley-Interscience, Chichester, in press.
 - [8] U. Pindur and R. Adam, J. Heterocyclic Chem., 25, 1 (1988).
 - [9] R. J. Sundberg and H. F. Russel, J. Org. Chem., 38, 3324 (1973).
- [10] U. Pindur and H. Erfanian-Abdoust, Chem. Rev., 89, 1681 (1989); U. Pindur and H. Erfanian-Abdoust, Heterocycles, 31, 1751 (1990).
- [11] Compounds 1a and 1b are readily available from indol-3-alkanoic acids according to a method first described by H. Plieninger, W. Müller and K. Weinert, *Chem. Ber.*, 97, 667 (1964).
- [12] J. Rokach, D. McNeill and C. S. Rooney, J. Chem. Soc., Chem. Commun., 1085 (1971).
- [13a] S. Malik, S. S. Ahmed, S. J. Haider and A. Muzaffer, Tetrahedron Letters, 28, 163 (1987).
- [13b] A. H. Jackson, B. Naidoo, A. E. Smith, A. S. Bailey and M. H. Vandervala, J. Chem. Soc., Chem. Commun., 779 (1978).
- [14] M. Medio-Simon, H. Erfanian-Abdoust and U. Pindur, Liebigs Ann. Chem., 601 (1991).
- [15] S. W. Djurić, R. M. Herbert and F. G. Holliman, J. Heterocyclic Chem., 22, 1425 (1985); no physical data for compound 6 are reported.